Browse Source

Initial commit

master
Maximilian Stiefel 7 months ago
commit
de33ab1f71
  1. 140
      .gitignore
  2. 14
      LICENSE
  3. 2
      README.md
  4. 166
      ecar.py
  5. 28
      example_0.json
  6. BIN
      pictures/plot_ex_0.png

140
.gitignore

@ -0,0 +1,140 @@
# ---> Python
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/

14
LICENSE

@ -0,0 +1,14 @@
Copyright (c) <year> <owner>. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
This product includes software developed by the the organization.
4. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY COPYRIGHT HOLDER "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2
README.md

@ -0,0 +1,2 @@
# EconomicsOfAHeatPump

166
ecar.py

@ -0,0 +1,166 @@
import matplotlib.pyplot as plt
import numpy as np
import json
import sys
import argparse
__author__ = 'm3x1m0m'
class c_settings_extractor:
def __init__(self, fname):
with open(fname, "r") as rf:
settings = json.load(rf)
kilometer_price_ccar = settings["ccar"]["litres_per_kilometer"] * settings["juice_litre_price"]
self.labels = [settings["ecar"]["label"], settings["ccar"]["label"]]
self.purchase = np.array([settings["ecar"]["price"], settings["ccar"]["price"]])
self.taxes = np.array([settings["ecar"]["taxes"], settings["ccar"]["taxes"]])
self.insurance = np.array([settings["ecar"]["insurance"], settings["ccar"]["insurance"]])
kilometer_price_ecar = ( settings["ecar"]["charging_behaviour"]["percent_home_charges"] * settings["kwh_price_home"]
+ settings["ecar"]["charging_behaviour"]["percent_commercial_charges"] * settings["kwh_price_commercial"]) / 100.0
self.driving = np.array([kilometer_price_ecar * settings["kilometers_per_year"], kilometer_price_ccar * settings["kilometers_per_year"]])
self.maintenance = np.array([settings["ecar"]["maintenance"], settings["ccar"]["maintenance"]])
self.kilometers = settings["kilometers_per_year"]
self.currency = settings["currency"]
def get_labels(self):
return self.labels
def get_purchase(self):
return self.purchase
def get_taxes(self):
return self.taxes
def get_insurance(self):
return self.insurance
def get_driving(self):
return self.driving
def get_maintenance(self):
return self.maintenance
def get_kilometers(self):
return self.kilometers
def get_currency(self):
return self.currency
class c_ecar_comparator:
def __init__(self, fname):
self.settings_extractor = c_settings_extractor(fname)
def calculate_costs_a_year(self):
taxes = self.settings_extractor.get_taxes()
insurance = self.settings_extractor.get_insurance()
driving = self.settings_extractor.get_driving()
maintenance = self.settings_extractor.get_maintenance()
return taxes + insurance + driving + maintenance
def calculate_costs(self, years, months):
months_a_year = 12.0
costs_a_year = self.calculate_costs_a_year()
return costs_a_year * (years + months/months_a_year)
def calculate_break_even(self):
total_costs = self.settings_extractor.get_purchase()
months_a_year = 12.0
increment = self.calculate_costs_a_year() / months_a_year
months = 0
while total_costs[0] > total_costs[1]:
total_costs = total_costs + increment
months += 1
kilometers = self.settings_extractor.get_kilometers() * months / months_a_year
return [months//months_a_year, months%months_a_year, kilometers] # years, months
def calculate_amortization_point(self):
y = 0
m = 1
months_a_year = 12.0
# Insurance and taxes need to be payed anyway
relevant_costs_a_year = self.settings_extractor.get_driving() + self.settings_extractor.get_maintenance()
savings_a_month = (relevant_costs_a_year[1]-relevant_costs_a_year[0]) / months_a_year
months_till_amortized = self.settings_extractor.get_purchase()[0] / savings_a_month
kilometers = months_till_amortized * self.settings_extractor.get_kilometers() / months_a_year
months_till_amortized = np.ceil(months_till_amortized)
return months_till_amortized//months_a_year, months_till_amortized%months_a_year, round(kilometers, ndigits=2)
def main():
parser = argparse.ArgumentParser(description='This script allows to calculate if an electric car makes sense financially for you.')
parser.add_argument('-a','--settings', help='Settings file.', required=True, metavar=('FILENAME'))
parser.add_argument('-b','--break_even', help='Calculate the break even point (when the EV becomes cheaper).', action='store_true')
parser.add_argument('-c','--amortization', help='Calculate the point in time when the electric vehicle is amortized completely by savings.', action='store_true')
parser.add_argument('-d','--savings_per_month', help='Calculate savings per month.', action='store_true')
parser.add_argument('-e','--savings_per_year', help='Calculate savings per year.', action='store_true')
parser.add_argument('-f','--savings_per_kilometer', help='Calculate savings per 100 kilometers (only driving, no maintenance, taxes or insurance).', action='store_true')
parser.add_argument('-g','--plot', help='Visualize costs over one or multiple years.', type=int, metavar=('YEARS'))
args = parser.parse_args()
if not args.break_even and not args.savings_per_year and not args.savings_per_month and not args.plot:
sys.exit("Please choose one or multiple options")
comparator = c_ecar_comparator(args.settings)
extractor = c_settings_extractor(args.settings)
be_years = None
be_months = None
be_kilometers = None
if args.break_even:
be_years, be_months, be_kilometers = comparator.calculate_break_even()
print("Break even after {} years and {} months.".format(be_years, be_months))
if args.savings_per_month:
years = 0
months = 1
savings = comparator.calculate_costs(years, months)
print("Savings per month based on yearly spending: {}.".format(round(savings[1]-savings[0], ndigits=2)))
if args.savings_per_year:
years = 1
months = 0
savings = comparator.calculate_costs(years, months)
print("Savings per year: {}.".format(round(savings[1]-savings[0], ndigits=2)))
if args.savings_per_kilometer:
hundred_km = 100.0
driving = hundred_km * extractor.get_driving() / extractor.get_kilometers()
labels = extractor.get_labels()
print("Costs driving 100 km in the {}: {}. Costs driving 100 km in the {}: {}.".format(labels[0], round(driving[0], ndigits=2), labels[1], round(driving[1]), ndigits=2))
am_years = None
am_months = None
am_kilometers = None
if args.amortization:
am_years, am_months, am_kilometers = comparator.calculate_amortization_point()
print("The electric vehicle will be amortized by savings after {} years, {} months or exactely at {} kilometres.".format(am_years, am_months, am_kilometers))
if args.plot != None:
width = 0.3
plt_colors = ["#8ecae6", "#219ebc", "#023047", "#ffb703", "#fb8500"];
color_ind = 0
labels = extractor.get_labels()
purchase = extractor.get_purchase()
taxes = extractor.get_taxes()
insurance = extractor.get_insurance()
driving = extractor.get_driving()
maintenance = extractor.get_maintenance()
fig, ax = plt.subplots()
ax.bar(labels, purchase, width, label = "Price", color = plt_colors[0])
current_y = extractor.get_purchase()
y = 0
for i in range(args.plot):
ax.bar(labels, taxes, width, bottom = current_y, label = "Taxes".format(y), color = plt_colors[1])
current_y = current_y + taxes
ax.bar(labels, insurance, width, bottom = current_y, label = "Insurance".format(y), color = plt_colors[2])
current_y = current_y + insurance
ax.bar(labels, driving, width, bottom = current_y, label = "Driving".format(y), color = plt_colors[3])
current_y = current_y + driving
ax.bar(labels, maintenance, width, bottom = current_y, label = "Maintenance".format(y), color = plt_colors[4])
current_y = current_y + maintenance
y += 1
labels = ["Purchase", "Taxes", "Insurance", "Driving", "Maintenance"]
lnspace_start = -0.2
lnspace_stop = 1.2
lnspace_n = 10
x_text = 0.2
if args.break_even:
months_a_year = 12.0
be_money = (be_years + be_months/months_a_year) * comparator.calculate_costs_a_year()
be_money = be_money[1] + extractor.get_purchase()
ax.plot(np.linspace(lnspace_start, lnspace_stop, lnspace_n), [be_money[1]]*lnspace_n, "--", color = plt_colors[2], label = "Break even")
ax.text(x_text, be_money[1] + 100, "Break even: {} years, {} months, {} kilometers".format(be_years, be_months, be_kilometers))
labels = ["Break even"] + labels
if args.amortization:
months_a_year = 12.0
am_money = (am_years + am_months/months_a_year) * comparator.calculate_costs_a_year()
am_money = am_money[1] + extractor.get_purchase()
ax.plot(np.linspace(lnspace_start, lnspace_stop, lnspace_n), [am_money[1]]*lnspace_n, "--", color = plt_colors[2], label = "Amortization")
ax.text(x_text, am_money[1] + 100, "Amortization: {} years, {} months, {} kilometers".format(am_years, am_months, am_kilometers))
labels = ["Amortization"] + labels
ax.set_ylabel(extractor.get_currency())
ax.set_title("Comparision of economics: Electric vs. combustion car")
ax.legend(labels)
ax.grid(axis = "y")
plt.show()
if __name__ == "__main__":
main()

28
example_0.json

@ -0,0 +1,28 @@
{
"currency": "CHF",
"kwh_price_home": 0.2,
"kwh_price_commercial": 0.5,
"juice_litre_price": 1.75,
"kilometers_per_year": 20000.0,
"ecar": {
"label": "Nissan Leaf 2013",
"price": 7600,
"taxes": 0,
"insurance": 354,
"kwh_per_kilometer": 0.16,
"maintenance": 100,
"charging_behaviour": {
"percent_free_charges": 90,
"percent_home_charges": 5,
"percent_commercial_charges": 5
}
},
"ccar": {
"label": "Suzuki Grand Vitara 2008",
"price": 7000,
"taxes": 350,
"insurance": 362,
"litres_per_kilometer": 0.08,
"maintenance": 1000
}
}

BIN
pictures/plot_ex_0.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Loading…
Cancel
Save